如何优化垃圾回收机制?
在 Java 开发中,开发人员是无需过度关注对象的回收与释放的,JVM 的垃圾回收机制可以减轻不少工作量。但完全交由 JVM 回收对象,也会增加回收性能的不确定性。在一些特殊的业务场景下,不合适的垃圾回收算法以及策略,都有可能导致系统性能下降。面对不同的业务场景,垃圾回收的调优策略也不一样。例如,在对内存要求苛刻的情况下,需要提高对象的回收效率;在 CPU 使用率高的情况下,需要降低高并发时垃圾回收的频率。可以说,垃圾回收的调优是一项必备技能
垃圾回收机制掌握 GC 算法之前,我们需要先弄清楚 3 个问题。第一,回收发生在哪里?第二,对象在什么时候可以被回收?第三,如何回收这些对象?
问题一:回收发生在哪里?
JVM 的内存区域中,程序计数器、虚拟机栈和本地方法栈这 3 个区域是线程私有的,随着线程的创建而创建,销毁而销毁;栈中的栈帧随着方法的进入和退出进行入栈和出栈操作,每个栈帧中分配多少内存基本是在类结构确定下来的时候就已知的,因此这三个区域的内存分配和回收都具有确定性。那么垃圾回收的重点就是关注堆和方法区中的内存了,堆中的回收主要是对象的回收,方法区的回收主要是废弃常量和无用的类的回收
问题二:对象在什么时候可以被回收?
那 JVM 又是怎样判断一个对象是可以被回收的呢?一般一个对象不再被引用,就代表该对象可以被回收。目前有以下两种算法可以判断该对象是否可以被回收。引用计数算法:这种算法是通过一个对象的引用计数器来判断该对象是否被引用了。每当对象被引用,引用计数器就会加 1;每当引用失效,计数器就会减 1。当对象的引用计数器的值为 0 时,就说明该对象不再被引用,可以被回收了。这里强调一点,虽然引用计数算法的实现简单,判断效率也很高,但它存在着对象之间相互循环引用的问题,可达性分析算法:GC Roots 是该算法的基础,GC Roots 是所有对象的根对象,在 JVM 加载时,会创建一些普通对象引用正常对象。这些对象作为正常对象的起始点,在垃圾回收时,会从这些 GC Roots 开始向下搜索,当一个对象到 GC Roots 没有任何引用链相连时,就证明此对象是不可用的。目前 HotSpot 虚拟机采用的就是这种算法。以上两种算法都是通过引用来判断对象是否可以被回收。在 JDK 1.2 之后,Java 对引用的概念进行了扩充,将引用分为了以下四种
问题三:如何回收这些对象?
了解完 Java 程序中对象的回收条件,那么垃圾回收线程又是如何回收这些对象的呢?JVM 垃圾回收遵循以下两个特性。
- 自动性:Java 提供了一个系统级的线程来跟踪每一块分配出去的内存空间,当 JVM 处于空闲循环时,垃圾收集器线程会自动检查每一块分配出去的内存空间,然后自动回收每一块空闲的内存块。
- 不可预期性:一旦一个对象没有被引用了,该对象是否立刻被回收呢?答案是不可预期的。我们很难确定一个没有被引用的对象是不是会被立刻回收掉,因为有可能当程序结束后,这个对象仍在内存中。垃圾回收线程在 JVM 中是自动执行的,Java 程序无法强制执行。我们唯一能做的就是通过调用 System.gc 方法来"建议"执行垃圾收集器,但是否可执行,什么时候执行?仍然不可预期”
GC 算法
DK1.7 update14 之后 Hotspot 虚拟机所有的回收器整理如下(以下为服务端垃圾收集器):
其实在 JVM 规范中并没有明确 GC 的运作方式,各个厂商可以采用不同的方式实现垃圾收集器。我们可以通过 JVM 工具查询当前 JVM 使用的垃圾收集器类型,首先通过 ps 命令查询出进程 ID,再通过 jmap -heap ID 查询出 JVM 的配置信息,其中就包括垃圾收集器的设置类型
GC 性能衡量指标
- 吞吐量:这里的吞吐量是指应用程序所花费的时间和系统总运行时间的比值。我们可以按照这个公式来计算 GC 的吞吐量:系统总运行时间 = 应用程序耗时 +GC 耗时。如果系统运行了 100 分钟,GC 耗时 1 分钟,则系统吞吐量为 99%。GC 的吞吐量一般不能低于 95%。
- 停顿时间:指垃圾收集器正在运行时,应用程序的暂停时间。对于串行回收器而言,停顿时间可能会比较长;而使用并发回收器,由于垃圾收集器和应用程序交替运行,程序的停顿时间就会变短,但其效率很可能不如独占垃圾收集器,系统的吞吐量也很可能会降低。
- 垃圾回收频率:多久发生一次指垃圾回收呢?通常垃圾回收的频率越低越好,增大堆内存空间可以有效降低垃圾回收发生的频率,但同时也意味着堆积的回收对象越多,最终也会增加回收时的停顿时间。所以我们只要适当地增大堆内存空间
查看 & 分析 GC 日志
已知了性能衡量指标,现在我们需要通过工具查询 GC 相关日志,统计各项指标的信息。首先,我们需要通过 JVM 参数预先设置 GC 日志,通常有以下几种 JVM 参数设置
-XX:+PrintGC:打印GC的基本信息。
-XX:+PrintGCDetails:打印更详细的GC信息,包括年轻代和老年代的使用情况。
-Xloggc:<file>:将GC日志输出到指定文件
GCeasy是一款非常直观的 GC 日志分析工具,我们可以将日志文件压缩之后,上传到 GCeasy 官网即可看到非常清楚的 GC 日志分析结果
GC 调优策略
- 降低 Minor GC 频率通常情况下,由于新生代空间较小,Eden 区很快被填满,就会导致频繁 Minor GC,因此我们可以通过增大新生代空间来降低 Minor GC 的频率。可能你会有这样的疑问,扩容 Eden 区虽然可以减少 Minor GC 的次数,但不会增加单次 Minor GC 的时间吗?如果单次 Minor GC 的时间增加,那也很难达到我们期待的优化效果呀
- 降低 Full GC 的频率通常情况下,由于堆内存空间不足或老年代对象太多,会触发 Full GC,频繁的 Full GC 会带来上下文切换,增加系统的性能开销。我们可以使用哪些方法来降低 Full GC 的频率呢?减少创建大对象:在平常的业务场景中,我们习惯一次性从数据库中查询出一个大对象用于 web 端显示。
- 减少创建大对象:在平常的业务场景中,我们习惯一次性从数据库中查询出一个大对象用于 web 端显示。例如,我之前碰到过一个一次性查询出 60 个字段的业务操作,这种大对象如果超过年轻代最大对象阈值,会被直接创建在老年代;即使被创建在了年轻代,由于年轻代的内存空间有限,通过 Minor GC 之后也会进入到老年代。这种大对象很容易产生较多的 Full GC。我们可以将这种大对象拆解出来,首次只查询一些比较重要的字段,如果还需要其它字段辅助查看,再通过第二次查询显示剩余的字段。
- 增大堆内存空间:在堆内存不足的情况下,增大堆内存空间,且设置初始化堆内存为最大堆内存,也可以降低 Full GC 的频率。
- 选择合适的 GC 回收器:假设我们有这样一个需求,要求每次操作的响应时间必须在 500ms 以内,这个时候我们一般会选择响应速度较快的 GC 回收器,CMS(Concurrent Mark Sweep)回收器和 G1 回收器都是不错的选择,而当我们的需求对系统吞吐量有要求时,就可以选择 Parallel Scavenge 回收器来提高系统的吞吐量